Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging.

نویسندگان

  • Matthias Oelze
  • Swenja Kröller-Schön
  • Sebastian Steven
  • Edith Lubos
  • Christopher Doppler
  • Michael Hausding
  • Silke Tobias
  • Christoph Brochhausen
  • Huige Li
  • Michael Torzewski
  • Philip Wenzel
  • Markus Bachschmid
  • Karl J Lackner
  • Eberhard Schulz
  • Thomas Münzel
  • Andreas Daiber
چکیده

Recently, we demonstrated that gene ablation of mitochondrial manganese superoxide dismutase and aldehyde dehydrogenase-2 markedly contributed to age-related vascular dysfunction and mitochondrial oxidative stress. The present study has sought to investigate the extent of vascular dysfunction and oxidant formation in glutathione peroxidase-1-deficient (GPx-1(-/-)) mice during the aging process with special emphasis on dysregulation (uncoupling) of the endothelial NO synthase. GPx-1(-/-) mice on a C57 black 6 (C57BL/6) background at 2, 6, and 12 months of age were used. Vascular function was significantly impaired in 12-month-old GPx-1(-/-) -mice as compared with age-matched controls. Oxidant formation, detected by 3-nitrotyrosine staining and dihydroethidine-based fluorescence microtopography, was increased in the aged GPx-1(-/-) mice. Aging per se caused a substantial protein kinase C- and protein tyrosine kinase-dependent phosphorylation as well as S-glutathionylation of endothelial NO synthase associated with uncoupling, a phenomenon that was more pronounced in aged GPx-1(-/-) mice. GPx-1 ablation increased adhesion of leukocytes to cultured endothelial cells and CD68 and F4/80 staining in cardiac tissue. Aged GPx-1(-/-) mice displayed increased oxidant formation as compared with their wild-type littermates, triggering redox-signaling pathways associated with endothelial NO synthase dysfunction and uncoupling. Thus, our data demonstrate that aging leads to decreased NO bioavailability because of endothelial NO synthase dysfunction and uncoupling of the enzyme leading to endothelial dysfunction, vascular remodeling, and promotion of adhesion and infiltration of leukocytes into cardiovascular tissue, all of which was more prominent in aged GPx-1(-/-) mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Redox State and Endothelial Dysfunction in Mildly Hyperhomocysteinemic Cystathionine -Synthase–Deficient Mice

Previous in vitro experiments have shown that hyperhomocysteinemia leads to oxidative inactivation of nitric oxide, in part by inhibiting the expression of cellular glutathione peroxidase (GPx-1). To elucidate the role of intracellular redox status on homocysteine-induced endothelial dysfunction and oxidant stress, heterozygous cystathionine -synthase–deficient (CBS ) and wild-type (CBS / ) mic...

متن کامل

Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine beta-synthase-deficient mice.

Previous in vitro experiments have shown that hyperhomocysteinemia leads to oxidative inactivation of nitric oxide, in part by inhibiting the expression of cellular glutathione peroxidase (GPx-1). To elucidate the role of intracellular redox status on homocysteine-induced endothelial dysfunction and oxidant stress, heterozygous cystathionine beta-synthase-deficient (CBS(-/+)) and wild-type (CBS...

متن کامل

Oxidative stress and endothelial dysfunction in pulmonary arteries of aged rats.

Aging in the systemic circulation is associated with generalized endothelial dysfunction and increased oxidative stress, which are thought to contribute to the increased morbidity and mortality of cardiovascular diseases in the elderly. Previous studies have shown that pulmonary artery pressure and vascular resistance increase with normal aging in humans, yet age-related functional and phenotyp...

متن کامل

Critical role of vascular peroxidase 1 in regulating endothelial nitric oxide synthase

Vascular peroxidase 1 (VPO1) is a member of the peroxidase family which aggravates oxidative stress by producing hypochlorous acid (HOCl). Our previous study demonstrated that VPO1 plays a critical role in endothelial dysfunction through dimethylarginine dimethylaminohydrolase2 (DDAH2)/asymmetric Dimethylarginine (ADMA) pathway. Hereby we describe the regulatory role of VPO1 on endothelial nitr...

متن کامل

Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice.

Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 63 2  شماره 

صفحات  -

تاریخ انتشار 2014